Dokumentation der Transformationssoftware GNTRANS_NI

Stand: 27. Juni 2017, Version 1.4.4
### Änderungshistorie

<table>
<thead>
<tr>
<th>Version</th>
<th>Datum</th>
<th>Beschreibung der Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.4</td>
<td>20.06.2017</td>
<td>Dokumentation der Transformationsoftware GNTRANS_NI</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Pakete der Transformationsssoftware GNTRANS_NI ................................................................. 7
Abbildung 2: Ausdehnung des DGM-T im ETRS89/UTM (Geltungsbereich von GNTRANS_NI) ...................... 9
Abbildung 3: Metadaten zum DGM-T, thematisch gefärbt in Abhängigkeit der Datenquelle .................................9
Abbildung 4: Schritt 1 der Installation von GNTRANS_NI ............................................................................. 10
Abbildung 5: Schritt 2 der Installation von GNTRANS_NI ............................................................................. 10
Abbildung 6: Schritt 3 der Installation von GNTRANS_NI ............................................................................. 11
Abbildung 7: Schritt 4 der Installation von GNTRANS_NI ............................................................................. 11
Abbildung 8: Schritt 5 der Installation von GNTRANS_NI ............................................................................. 12
Abbildung 9: Schritt 6 der Installation von GNTRANS_NI ............................................................................. 12
Abbildung 10: Schritt 6 der Installation von GNTRANS_NI ............................................................................ 13
Abbildung 11: Transformation von Einzelpunkten von DHDN/GK nach ETRS89/UTM mit WinGNTRANS_NI .......... 16
Abbildung 12: Transformation von Einzelpunkten von ETRS89/UTM nach DHDN/GK mit WinGNTRANS_NI .......... 16
Abbildung 13: Auswahl benachbarter Abbildungsstreifen bzw. -zonen ............................................................. 17
Abbildung 14: Datei auswählen .......................................................................................................................... 17
Abbildung 15: Punkte aus einer Datei mit WinGNTRANS_NI transformieren ..................................................... 18
Abbildung 16: Fehlermeldung bei Nichteinhaltung von Formatvorgaben ......................................................... 19
Abbildung 17: Fehlermeldung bei Dateien, deren Datensätze im Hinblick auf die Höhe der Punkte inhomogen sind.................................................................................................................................................. 19
Abbildung 18: Hinweis auf den Umgang mit nutzerseitigen Höheninformationen ............................................ 20
Abbildung 19: Warnung beim Anzeigen umfangreicher Dateien ...................................................................... 20
Abbildung 20: Anzeige von Dateinhalten am Beispiel der Eingabedatei „test.gkh“ ............................................ 21
Abbildung 21: Hinweis bei erfolgreicher Transformation .................................................................................... 21
Abbildung 22: Hinweis auf Fehler bei der Transformation ................................................................................. 22
Abbildung 23: Anzeige von Dateinhalten am Beispiel der Ausgabedatei „test.utm“ ............................................ 22
Abbildung 24: Beispiel für den Inhalt einer Log-Datei ......................................................................................... 23

Tabellenverzeichnis

Tabelle 1: Leistungsumfang der GNTRANS_NI-Pakete .................................................................................. 8
Tabelle 2: Konsolenkommandos für GNTRANS_NI EXEC, Rücktransformation entsprechend ..................... 24
Tabelle 3: Funktionen der GNTRANS_NI API ............................................................................................... 25
Abkürzungen

AAA AFIS-ALKIS-ATKIS
AdV Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland
AFIS Amtliches Festpunktinformationssystem
ALKIS Amtliches Liegenschaftskatasterinformationssystem
API Application Programming Interface (engl.)
ASCII American Standard Code for Information Interchange (engl.)
ATKIS Amtliches Topographisch-Kartographisches Informationssystem
CLI Command Line Interface (engl.)
CRS Coordinate Reference System (engl.)
crsL CRS der Lage
crsH CRS der Höhe
DE Deutschland
DGM Digitales Geländefundskodell
DGM-T Digitales Geländefundskodell für die Transformation
DHDN Deutsches Hauptdreiecksnetz
DLL Dynamic Link Library (engl.)
ETRS89 Europäisches Terrestrisches Referenzsystem zur Epoche 1989.0
EXEC Executables
GDI Geodateninfrastruktur
GeoInfoDok Dokumentation zur Modellierung der Geoinformationen des amtlichen Vermessungs- wesens
GK Gauß-Krüger
GUI Graphical User Interface (engl.)
HS160 Höhenstatus 160
INSPIRE Infrastructure for Spatial Information in Europe (engl.)
LS100 Lagestatus 100
LGLN Landesamt für Geoinformation und Landentwicklung Niedersachsen
MD5 Message-Digest Algorithm 5
MSVC++ Microsoft Visual C++
NHN Normalhöhen-Null
NI Niedersachsen
sn Streifennummer
SRTM Shuttle Radar Topography Mission
USGS U.S. Geological Survey
UTM Universal Transversal Mercator (engl.)
VKV Niedersächsische Vermessungs- und Katasterverwaltung
zn Zonennummer
1 Einleitung

1.1 Rahmenbedingungen


1.2 Amtliches Bezugssystem in Niedersachsen

Amtliches niedersächsisches Lagebezugssystem ist bis zum ETRS89/UTM-Einführungserlass der Lagestatus 100 (LS100). Dabei handelt es sich um Koordinaten im Deutschen Hauptdreiecksnetz (DHDN), die mithilfe der Gauß-Krüger (GK)-Vorschriften in den drei Meridianstreifensystemen 2, 3 oder 4 abgebildet werden.

In der Dokumentation zur Modellierung der Geoinformationen des amtlichen Vermessungswesens (GeoInfoDok) werden für Koordinatenreferenzsysteme (CRS) Bezeichner mit folgendem Aufbau definiert (AdV 2009):

[Land]_[geodätisches Datum]_[Koordinatensystem]_[Submerkmale des Koordinatensystems].

Die Submerkmale können beispielsweise den landesspezifischen Lagestatus umfassen. Demzufolge wird der niedersächsische LS100 wie folgt benannt:

DE_DHDN_3GK<sn>_NI100.

Der Platzhalter <sn> beinhaltet die Nummer des GK-Meridianstreifens, so dass der LS100 durch DE_DHDN_3GK2_NI100, DE_DHDN_3GK3_NI100 und DE_DHDN_3GK4_NI100 identifiziert werden kann. Das CRS ETRS89/UTM heißt im Sinne der Terminologie der GeoInfoDok ETRS89_UTM<zn>. 

Stand: 27. Juni 2017
Da Niedersachsen vollständig in der UTM-Zone mit der Zonennummer (<zn>) 32 liegt, wird das künftige Lagebezugssystem also mit ETRS89_UTM32 angesprochen.

Der Bezeichner für ellipsoidische Koordinaten im DHDN ist DE_DHDN_Lat-Lon, für ellipsoidische Koordinaten im ETRS89 lautet er ETRS89_Lat-Lon.

Dreidimensionale kartesische Koordinaten im ETRS89 werden mit ETRS89_X-Y-Z angegeben.

CRS der Lage (<crsL>) können mit CRS der Höhe (<crsH>) wie folgt verknüpft werden: <crsL>^<crsH>, z. B. DE_DHDN_3GK3_NI100*DE_DHHN_HS160 für Punkte, die Lagekoordinaten im LS100 und eine Höhe im Höhenstatus 160 (HS160) aufweisen.

1.3 Transformationssoftware für den Bezugssystemwechsel

1.3.1 Nutzungsbedingungen

Bei der Nutzung von GNTRANS_NI sind die entsprechenden Nutzungsbedingungen zu beachten, die unter http://www.lgln.de/gntrans_ni zur Verfügung gestellt werden.

1.3.2 Leistungsumfang von GNTRANS_NI

GNTRANS_NI ist weder für Transformationen in den benachbarten Bundesländern vorgesehen noch für diese geeignet.

GNTRANS_NI beruht auf der Software GNTRANS der Firma Geo++ Gesellschaft für satellitengestützte geodätische und navigatorische Technologien GmbH. Es ermöglicht eine landesweite Datumstransformation zwischen folgenden CRS der Lage:

- DE_DHDN_3GK2_NI100 ↔ ETRS89_UTM32,
- DE_DHDN_3GK3_NI100 ↔ ETRS89_UTM32,
- DE_DHDN_3GK4_NI100 ↔ ETRS89_UTM32.

GNTRANS_NI enthält zwei Komponenten für windowsbasierte Computersysteme (s. Abbildung 1):

- GNTRANS_NI EXEC kann als grafische Benutzeroberfläche (Graphical User Interface, GUI) oder über die Kommandozeile (Command Line Interface, CLI) genutzt werden;
- GNTRANS_NI API beinhaltet eine Schnittstelle zur Anwendungsprogrammierung (Application Programming Interface, API) für eine flexible Einbindung in externe Programme; die API ist als dynamische Programmmbibliothek (Dynamic Link Library, DLL) ausgestaltet.

Zielgruppen von GNTRANS_NI EXEC sind Direktanwender, die Punktlisten im Format American Standard Code for Information Interchange (ASCII) oder Einzelpunkte transformieren möchten. Software-Entwickler benötigen hingegen für die individuelle Einbindung in externe Programme die GNTRANS_NI API.

Abbildung 1: Pakete der Transformationssoftware GNTRANS_NI

Die Pakete unterscheiden sich hinsichtlich der Unterstützung der möglichen CRS (s. Tabelle 1).
Tabelle 1: Leistungsumfang der GNTRANS_NI-Pakete

<table>
<thead>
<tr>
<th>Unterstütztes CRS</th>
<th>GNTRANS_NI EXEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GUI</td>
</tr>
<tr>
<td>DE_DHDN_3GK&lt;sn&gt;_NI100</td>
<td>+</td>
</tr>
<tr>
<td>DE_DHDN_3GK3_NI100</td>
<td>+</td>
</tr>
<tr>
<td>DE_DHDN_3GK4_NI100</td>
<td>+</td>
</tr>
<tr>
<td>ETRS89_utm32</td>
<td>+</td>
</tr>
<tr>
<td>DE_DHDN_Lat-Lon</td>
<td>-</td>
</tr>
<tr>
<td>ETRS89_Lat-Lon</td>
<td>-</td>
</tr>
<tr>
<td>ETRS89_X-Y-Z</td>
<td>-</td>
</tr>
</tbody>
</table>

### 1.3.3 Das Transformationsmodell Niedersachsen


Qualitativ repräsentiert das Transformationsmodell Niedersachsen die amtlichen Festpunktfelder zum Zeitpunkt der Umstellung der Datenbestände des AFIS und des ALKIS auf ETRS89/UTM.

In technischer Hinsicht gilt das Transformationsmodell Niedersachsen nur bei Verwendung innerhalb der Software GNTRANS_NI.

### 1.3.4 Höheninformationen für die Transformation

Für die Transformation werden Höheninformationen mit einer Genauigkeit von \(\pm 15\) m benötigt. Bei dieser Genauigkeit ist der Einfluss der Höhe auf die transformierten Lagekoordinaten geringer als 1 mm. Um eine entsprechende Genauigkeit und die Übereinstimmung mit den AFIS-/ALKIS-Geometrien im Bereich eines Millimeters auch für Dritte sicherzustellen, ist in GNTRANS_NI ein Digitales Geländemodell für die Transformation (DGM-T) integriert. Es liefert innerhalb von Niedersachsen zu jedem Punkt auf der Geländeoberfläche die notwendige Höheninformation.

Im Hinblick auf das DGM-T ist zu beachten, dass jegliche Höheninformation des Nutzers im Berechnungsvorgang durch die DGM-T-Höhe ersetzt wird. Ausgegeben wird jedoch stets wieder die eingegabene Höhe. Damit geht einher, dass die mit GNTRANS_NI erzielten Transformationsergebnisse bezüglich der Höhenlage nur für Punkte gelten, die auf der Erdoberfläche liegen bzw. maximal 15 m von dieser abweichen.

Das DGM-T ist innerhalb des niedersächsischen Landesgebiets und mindestens einen Kilometer über die Landesgrenze hinaus flächendeckend hinterlegt (s. Abbildung 2).


- 8-stellige Nummer der Einheit (Datenfeld „NBZ_GK“),
- originären CRS der Einheit (Datenfeld „NBZ_OriginalCRS“) und
- Datenquelle (Datenfeld „DATASOURCE“).

Eine mögliche Visualisierung der Metadaten zum DGM-T zeigt Abbildung 3.

\(^1\)Voraussetzung: Es liegt eine ellipsoidische Höhe vor (s. auch Hinweise zur Verwendung von Höheninformationen unter Abschnitt 1.3.4)
1.3.5 Eigenschaften der Transformation

Das Transformationsmodell Niedersachsen ermöglicht über die gesamte Landesfläche die einheitliche, stetige, homogene, nachbarschaftstreue sowie in der Hin- und Rücktransformation eindeutige Datumstransformation zwischen den Lagebezugssystemen DE_DHDN_3GK<sn>_NI100 und ETRS89_UTM<zn>.

Die Genauigkeit der Transformation wird wesentlich von der Koordinatenqualität des Startsystems bestimmt. Das Transformationsmodell Niedersachsen bietet für den Wechsel des Lagebezugssystems eine Genauigkeit, die besser als 2 cm ist.

Die mit GNTRANS_NI erzielten Ergebnisse gelten streng für Punkte auf der Erdoberfläche.
2 GNTRANS_NI

2.1 Installation


Der parallele Betrieb mit anderen Software-Produkten der Firma Geo++® führt zu keinen Konflikten, da durch das Setup keine Umgebungsvariablen gesetzt werden.

Die Installation von GNTRANS_NI wurde unter Microsoft Windows 7 Enterprise Service Pack 1 32-/64-Bit getestet.

GNTRANS_NI wird als ZIP-Archiv „GNTRANS_NI_V1-4-4_setup.zip“ ausgeliefert. Das Archiv enthält das Installationsprogramm „GNTRANS_NI_V1-4-4_setup.exe“ und ist zu entpacken.

Nach Ausführen der Datei „GNTRANS_NI_V1-4-4_setup.exe“ durch Doppelklick, kann das Setup fortgesetzt bzw. abgebrochen werden (s. Abbildung 4).

Abbildung 4: Schritt 1 der Installation von GNTRANS_NI

Im nächsten Schritt werden die Nutzungsbedingungen angezeigt (s. Abbildung 5). Das Einverständnis zu diesen Nutzungsbedingungen ist zu bestätigen, bevor die Installation fortgesetzt werden kann.

Abbildung 5: Schritt 2 der Installation von GNTRANS_NI
Im nachfolgenden Dialog lässt sich der vorgegebene Standardordner anpassen (s. Abbildung 6).

Abbildung 6: Schritt 3 der Installation von GNTRANS_NI

Der Name des Startmenü-Ordners zur Erstellung der Verknüpfungen kann angepasst werden (s. Abbildung 7).

Abbildung 7: Schritt 4 der Installation von GNTRANS_NI
Optional wird eine Verknüpfung zur grafischen Benutzeroberfläche wingntrans_ni.exe erstellt (s. Abbildung 8).

Abbildung 8: Schritt 5 der Installation von GNTRANS_NI

Die getroffenen Einstellungen werden angezeigt (s. Abbildung 9).

Abbildung 9: Schritt 6 der Installation von GNTRANS_NI

Abbildung 10: Schritt 6 der Installation von GNTRANS_NI

Mit GNTRANS_NI werden unter Installationspfad\gntrans_ni\components\gntrans\help\ in der Textdatei „readme_hash.txt“ Message-Digest Algorithm (MD5)-Prüfsummen für das Transformationsmodell Niedersachsen („Modell_NI.bin“) und für die Dateien des DGM-T („LGNDGM.dat“ und „LGNDGM.idx“) bereitgestellt. Es ist zu empfehlen, diese Prüfsummen für die genannten Dateien nach der Installation lokal zu ermitteln und mit den bereitgestellten Werten zu vergleichen. Bei Nicht-Übereinstimmung sind möglicherweise bei der Datenübertragung Fehler entstanden.
2.2 Verzeichnisstruktur

Nach der Installation im Standardverzeichnis „C:\Program Files (x86)\LGLN“ liegt die nachfolgend dargestellte Verzeichnisstruktur mit den angegebenen Dateien vor.

C:\Program Files (x86)\LGLN\nunins000.dat
unins000.exe
winGntrans64.ico

---

setupGntrans_ni.ico
uninstallGntrans_ni.ico

---

bin
condev.dll
dbtrafo.dll
gncrypto.dll
gntrans_ni.dll
gntrans_ni.exe
gntrtkdata_ni.dll
gntrtk_ni.dll
gpp_leapsec.dll
lgndgm.dll
os2win32.dll
wingntrans_ni.exe
wxbase28u_vc_geopp_vs08.dll
wxmsw28u_adv_vc_geopp_vs08.dll
wxmsw28u_core_vc_geopp_vs08.dll

---

bin64
condev_64.dll
dbtrafo_64.dll
gncrypto_64.dll
lgndgm_64.dll
gntrans_ni.exe
gntrans_ni_64.dll
gntrtkdata_ni_64.dll
gntrtk_ni_64.dll
gpp_leapsec_64.dll
lgndgm_64.dll
wingntrans_ni.exe
wxbase28u_vc_geopp_vs08_64.dll
wxmsw28u_adv_vc_geopp_vs08_64.dll
wxmsw28u_core_vc_geopp_vs08_64.dll

---

components

---

gntrans
data
dgm
lgndgm.dat
lgndgm.idx

---

help
ExampleGNTRANS_NI-CPP.cpp
gntrans_dll.h
readme_hash.txt
test.gkh
test.utm
test2.gkh

---

lang
german.lng

---

license

---

patch

---

Modell_NI.bin

---

Microsoft Visual C++ 2008 SP1 Redistributable Package (x64)
vcredist_x64.exe

Microsoft Visual C++ 2008 SP1 Redistributable Package (x86)
vcredist_x86.exe
2.3 GUI-Funktionalitäten

Die grafische Benutzeroberfläche im Paket GNTRANS_NI EXEC, auch WinGNTRANS_NI genannt, ist eine Applikation zur grafischen Steuerung von GNTRANS_NI. WinGNTRANS_NI ermöglicht die Bedienung per Maussteuerung im Windows-Stil. Es ist für die Transformation von Einzelpunkten und ASCII-Punktlisten geeignet.

2.3.1 Einzelpunkte transformieren


Format und Projektion sind durch das ausgewählte Koordinatensystem festgelegt. Als Modell steht allein das Transformationsmodell Niedersachsen zur Verfügung.


Abbildung 11: Transformation von Einzelpunkten von DHDN/GK nach ETRS89/UTM mit WinGNTRANS_NI

Abbildung 12: Transformation von Einzelpunkten von ETRS89/UTM nach DHDN/GK mit WinGNTRANS_NI

### 2.3.2 Punkte aus einer Datei transformieren

In diesem Modus wird eine Eingabedatei (ASCII-kodiert) mit Koordinaten im Eingabesystem ausgewählt. Weitere Funktionalitäten wie die Auswahl des Eingabe- und des Ausgabekoordinatensystems stellen sich, wie unter Abschnitt 2.3.1 beschrieben, dar.

Abbildung 15: Punkte aus einer Datei mit WinGNTRANS_NI transformieren

Die Eingabedatei muss generell aus drei oder vier Spalten bestehen, deren Inhalte in der Zeile frei verteilt sein können. Beispielsweise sind die nachfolgenden drei Dateiausschnitte gleichwertig transformierbar.

1. Dateiausschnitt:

<table>
<thead>
<tr>
<th></th>
<th>3593500.000</th>
<th>5724000.000</th>
<th>248.800</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3593500.000</td>
<td>5725000.000</td>
<td>249.800</td>
</tr>
<tr>
<td>3</td>
<td>3593500.000</td>
<td>5726000.000</td>
<td>250.000</td>
</tr>
<tr>
<td>RS4</td>
<td>3593500.000</td>
<td>5727000.000</td>
<td>325.300</td>
</tr>
<tr>
<td>5</td>
<td>3593500.000</td>
<td>5728000.000</td>
<td>398.600</td>
</tr>
<tr>
<td>7</td>
<td>3593500.000</td>
<td>5730000.000</td>
<td>498.700</td>
</tr>
<tr>
<td>8</td>
<td>3593500.000</td>
<td>5731000.000</td>
<td>429.800</td>
</tr>
<tr>
<td>###9</td>
<td>3593500.000</td>
<td>5732000.000</td>
<td>682.000</td>
</tr>
<tr>
<td>10</td>
<td>3593500.000</td>
<td>5733000.000</td>
<td>575.400</td>
</tr>
<tr>
<td>11</td>
<td>3593500.000</td>
<td>5734000.000</td>
<td>412.500</td>
</tr>
<tr>
<td>12</td>
<td>3593500.000</td>
<td>5735000.000</td>
<td>356.300</td>
</tr>
</tbody>
</table>

2. Dateiausschnitt:

<table>
<thead>
<tr>
<th></th>
<th>3593500.000</th>
<th>5724000.000</th>
<th>248.800</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3593500.000</td>
<td>5725000.000</td>
<td>249.800</td>
</tr>
<tr>
<td>3</td>
<td>3593500.000</td>
<td>5726000.000</td>
<td>250.000</td>
</tr>
<tr>
<td>RS4</td>
<td>3593500.000</td>
<td>5727000.000</td>
<td>325.300</td>
</tr>
<tr>
<td>5</td>
<td>3593500.000</td>
<td>5728000.000</td>
<td>398.600</td>
</tr>
<tr>
<td>7</td>
<td>3593500.000</td>
<td>5730000.000</td>
<td>498.700</td>
</tr>
<tr>
<td>8</td>
<td>3593500.000</td>
<td>5731000.000</td>
<td>429.800</td>
</tr>
<tr>
<td>###9</td>
<td>3593500.000</td>
<td>5732000.000</td>
<td>682.000</td>
</tr>
<tr>
<td>10</td>
<td>3593500.000</td>
<td>5733000.000</td>
<td>575.400</td>
</tr>
<tr>
<td>11</td>
<td>3593500.000</td>
<td>5734000.000</td>
<td>412.500</td>
</tr>
<tr>
<td>12</td>
<td>3593500.000</td>
<td>5735000.000</td>
<td>356.300</td>
</tr>
</tbody>
</table>
3. Dateiausschnitt:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>X-Wert</th>
<th>Y-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3593500.000</td>
<td>5724000.000</td>
</tr>
<tr>
<td>2</td>
<td>3593500.000</td>
<td>5725000.000</td>
</tr>
<tr>
<td>3</td>
<td>3593500.000</td>
<td>5726000.000</td>
</tr>
<tr>
<td>RS4</td>
<td>3593500.000</td>
<td>5727000.000</td>
</tr>
<tr>
<td>5</td>
<td>3593500.000</td>
<td>5728000.000</td>
</tr>
<tr>
<td>35570001000</td>
<td>3593500.000</td>
<td>5729000.000</td>
</tr>
<tr>
<td>7</td>
<td>3593500.000</td>
<td>5730000.000</td>
</tr>
<tr>
<td>8</td>
<td>3593500.000</td>
<td>5731000.000</td>
</tr>
<tr>
<td>###9</td>
<td>3593500.000</td>
<td>5732000.000</td>
</tr>
<tr>
<td>10</td>
<td>3593500.000</td>
<td>5733000.000</td>
</tr>
<tr>
<td>11</td>
<td>3593500.000</td>
<td>5734000.000</td>
</tr>
<tr>
<td>12</td>
<td>3593500.000</td>
<td>5735000.000</td>
</tr>
</tbody>
</table>


Sofern die Eingabedatei sowohl Punkte mit und ohne Höhenwert enthält, werden die Punkte nur bis zum ersten Punkt transformiert, dessen Datenstruktur von den vorhergehenden abweicht. Zusätzlich erscheint die in Abbildung 17 dargestellte Fehlermeldung.

Abbildung 16: Fehlermeldung bei Nichteinhaltung von Formatvorgaben

Abbildung 17: Fehlermeldung bei Dateien, deren Datensätze im Hinblick auf die Höhe der Punkte inhomogen sind
Bei Einhaltung der genannten Formatanforderungen kann über „Inhalt anzeigen“ der Inhalt der Eingabedatei vor der Transformation betrachtet werden. Liegen durchgehend Höhenangaben vor, so wird hierzu ein Hinweis geliefert und die Anzeige auf die Lagekoordinaten beschränkt (s. Abbildung 18).

Abbildung 18: Hinweis auf den Umgang mit nutzerseitigen Höheninformationen

Wenn die anzuzeigende Datei eine gewisse Größe überschreitet, wird dem Anwender empfohlen, einen effizienteren Editor zur Anzeige des Dateinhalts zu verwenden (s. Abbildung 19).

Abbildung 19: Warnung beim Anzeigen umfangreicher Dateien
Nach der Transformation können die neu berechneten Koordinaten im Ausgabesystem über „Inhalt anzeigen“ betrachtet werden (s. Abbildung 23).

Das Ergebnis wird in der Ausgabedatei im ASCII-Format abgespeichert. Die Höhen der Eingabedatei werden unverändert in die Ausgabedatei übertragen, damit bereits vorhandene physikalische Höhen im neuen Lagebezugssystem weiter genutzt werden können.

**Ausschnitt aus der Ausgabedatei „test.utm“:**

<table>
<thead>
<tr>
<th>Pkt.Nr.</th>
<th>East [m]</th>
<th>North [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>32593389.3597</td>
<td>573145.3221</td>
</tr>
<tr>
<td>231</td>
<td>32593389.4017</td>
<td>573144.3971</td>
</tr>
<tr>
<td>232</td>
<td>32593389.4626</td>
<td>573144.5422</td>
</tr>
<tr>
<td>233</td>
<td>32593389.4432</td>
<td>573144.1486</td>
</tr>
<tr>
<td>234</td>
<td>32593389.4999</td>
<td>573143.7512</td>
</tr>
<tr>
<td>235</td>
<td>32593389.4769</td>
<td>573143.3547</td>
</tr>
<tr>
<td>236</td>
<td>32593389.4939</td>
<td>573142.9577</td>
</tr>
<tr>
<td>237</td>
<td>32593389.4376</td>
<td>573142.4751</td>
</tr>
<tr>
<td>238</td>
<td>32593389.5155</td>
<td>573142.1233</td>
</tr>
<tr>
<td>239</td>
<td>32593389.4911</td>
<td>574014.6647</td>
</tr>
<tr>
<td>240</td>
<td>32593389.4573</td>
<td>574111.3054</td>
</tr>
<tr>
<td>241</td>
<td>32593389.5234</td>
<td>574210.8530</td>
</tr>
<tr>
<td>242</td>
<td>32593389.4979</td>
<td>574314.4947</td>
</tr>
<tr>
<td>243</td>
<td>32593389.8179</td>
<td>572216.8746</td>
</tr>
<tr>
<td>244</td>
<td>32593389.8767</td>
<td>572318.4199</td>
</tr>
<tr>
<td>245</td>
<td>32593389.8265</td>
<td>572416.0674</td>
</tr>
<tr>
<td>246</td>
<td>32593389.8759</td>
<td>572516.6173</td>
</tr>
<tr>
<td>247</td>
<td>32593389.9167</td>
<td>572617.2675</td>
</tr>
</tbody>
</table>
Neben der Ausgabedatei legt WinGNTRANS_NI eine Ereignisprotokolldatei (Log-Datei) an (s. Abbildung 24). Diese wird unter Windows 7 im Pfad „C:\Users\gntrans\geopp\gntrans\log“ (Unterordner [gntrans] entspricht dem angemeldeten Benutzer) bereitgestellt. Die Log-Datei trägt, tageweise separiert, folgende Namensstruktur: „Gntrans_NI_JAHR-MM-TT.log“.

Abbildung 24: Beispiel für den Inhalt einer Log-Datei

2.4 CLI-Funktionalitäten

GNTRANS_NI kann in einer zweiten Applikation durch Aufruf an der Eingabekonsole oder in Stapelverarbeitung aus einer so genannten Batch-Datei heraus gestartet werden. Koordinaten können damit aus einer Datei heraus, nicht jedoch durch einzelne Eingabe transformiert werden.


GNTRANS_NI Version Jun 20 2017 13:11:06
C:\Program Files (x86)\LGLN\gntrans_ni\bin64\gntrans_ni.exe -?
GNTRANS_NI - Zur Transformation von Koordinaten im DHDN und ETRS89
Revision 1.4.3.0 Copyright (c) 2001 - 2017 Geo++ GmbH
LGLN-Standard-Modus ist aktiviert.

Befehlszeile:
GNTRANS_NI -t tran [-l land] [Optionen] [infile [outfile]]

Argumente:
-t tran : Benutze Transformation tran
-l land : Benutze Bundesland-Kennung land
(infile : input file [stdin]
outfile : output file [stdout]

Optionen:
-llh : Eingabe und Ausgabe von ellipsoidischen Koordinaten
(nur ETRS89)
-st wert : Setze Abbildungsstreifen bzw. -zone auf Wert wert
-2D : Aktiviere Hoehenverschneidung
+S : aktivierte Stochastik-Ausgabe
-? : Ausgabe dieser Online-Hilfe
-q : Deaktiviere Ausgaben auf Fehler-Kanal
-time : Aktiviere Ausgabe der Rechenzeit
-s : Zeige alle Laender und Patches

Transformationen:
ETLS: ETRS89 nach DHDN/GK
LSET: DHDN/GK nach ETRS89
Bundesland-Kennungen:
NISA7P_P53: Transformationsmodell Niedersachsen
Beispiele:
Transformation einer Datei von ETRS89/UTM nach DHDN/GK:
GNTRANS_NI -l NISA7P_P53 -t ETLS -2D < Eingabe-Datei > Ausgabe-Datei
Demnach gestaltet sich der Aufruf für das in Abschnitt 2.3.2 dokumentierte Transformationsbeispiel auf der Eingabekonsole wie folgt (inkl. Ausgabe der Rechenzeit):

```
GNTRANS_NI -l NISA7P_P53 -t LSET -time <test.gkh >test.utm 2>log.lst
```

Das Berechnungsergebnis wird über die Standardausgabe in die Datei „test.utm“ geschrieben. Weiterhin erscheint über den Fehler-Kanal (2) nachstehende Ausgabe in der Datei „log.lst“. Eine weitere Log-Datei wird nicht angelegt.

**Inhalt der Log-Datei:**

```
GNTRANS_NI Version Jun 20 2017 13:11:06
GNTRANS_NI.exe -l NISA7P_P53 -t LSET -time
09:36:18: GNTRANS-Modell initialisiert.
09:36:18: 3D Eingabe: Koordinaten werden mit DGM-Höhe transformiert.
09:36:18: Ausgabe ist 3D mit unveränderten Eingangshöhen.
09:36:19: Warnung: Koordinatenwerte von Punkt 485 liegen außerhalb des DGM
09:36:19: Zeit: 984 Millisekunden
09:36:19: Normales Ende
```


**Inhalt der Ausgabedatei „test.utm“ (Auszug):**

```
1 32593389.2731 5722149.0173 248.8000
2 32593389.2867 5723148.6179 249.8000
3 32593389.2982 5724148.2197 250.0000
4 32593389.3089 5725147.8246 325.3000
5 32593389.3200 5726147.4290 398.6000
6 32593389.3305 5727147.0303 400.3000
7 32593389.3424 5728146.6334 498.7000
8 32593389.3560 5729146.2337 429.8000
9 32593389.3708 5730145.8423 682.0000
10 32593389.3869 5731145.4410 575.4000
11 32593389.4071 5732145.0359 412.5000
12 32593389.4263 5733144.6349 356.3000
13 32593389.4441 5734144.2383 378.4000
14 32593389.4633 5735143.8435 505.8000
15 32593389.4834 5736143.4468 606.8000
16 32593389.5020 5737143.0470 560.3000
```

Die nachfolgende Tabelle fasst die grundsätzliche Aufrufsyntax von GNTRANS_NI für die Transformation in das Zielsystem ETRS89 zusammen. Dabei ist zu beachten, dass bei Setzen der Option „-llh“ die ellipsoidischen Koordinaten im ETRS89 in Grad, Minuten und Sekunden (jeweils durch ein Leerzeichen getrennt) ausgegeben werden bzw. einzugeben sind.

**Tabelle 2: Konsolenkommandos für GNTRANS_NI EXEC, Rücktransformation entsprechend**

<table>
<thead>
<tr>
<th>Startsystem</th>
<th>Zielsystem</th>
<th>Aufruf</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE_DHDN_3GK&lt;sn&gt;_NI100</td>
<td>ETRS89_UTM&lt;zn&gt;</td>
<td>gntrans_ni -l NISA7P_P53 -t LSET -2D</td>
</tr>
<tr>
<td>DE_DHDN_3GK&lt;sn&gt;_NI100</td>
<td>ETRS89_Lat-Lon</td>
<td>gntrans_ni -l NISA7P_P53 -t LSET -2D -llh</td>
</tr>
</tbody>
</table>
2.5 GNTRANS_NI API

2.5.1 Beschreibung

Die GNTRANS_NI API ist auf windowsbasierten Computersystemen einsetzbar. Sie dient der individuellen funktionellen Integration in externe Programme. Für diesen Zweck besteht sie aus

- den erforderlichen dynamischen Programmbibliotheken (u. a. "gntrans_ni.dll"),
- einer Header-Datei ("gntrans_dll.h"),
- dem Transformationsmodell Niedersachsen ("Modell_NI.bin") und
- dem DGM-T ("LGNDGM.dat" und "LGNDGM.idx").

Darüber hinaus sind der GNTRANS_NI API auch folgende Dateien beigefügt:

- das in Abschnitt 2.5.5 abgedruckte Beispielprogramm ("ExampleGNTRANS_NI-CPP.cpp") und
- zu Testzwecken eine exemplarische Eingabedatei ("test.gkh") mit Koordinaten in den CRS DE_DHDN_3GK3_NI100 und DE_DHDN_3GK4_NI100 und die zugehörige Ausgabedatei ("test.utm") mit den transformierten Koordinaten im CRS ETRS89_UTM32.

2.5.2 Installation und Einrichtung

Bei der Programmierung ist darauf zu achten, dass der verwendete Compiler die Header-Datei finden kann. Dies geschieht in der Regel über die Angabe einer entsprechenden Compiler-Option.

Die Einbindung der GNTRANS_NI-DLL erfolgt explizit. Bei der expliziten Verknüpfung werden die Funktionen der GNTRANS_NI-DLL zur Laufzeit geladen. Das Programmierbeispiel in Abschnitt 2.5.5 ist derart angelegt.

Durch die Installation von GNTRANS_NI werden keine Umgebungsvariablen gesetzt, daher ist es in eigenen Programmen notwendig, vor dem Laden der GNTRANS_NI-DLL in das Verzeichnis der Bibliothek zu wechseln, damit die GNTRANS_NI-DLL auf alle erforderlichen Programmkomponenten zugreifen kann.

Codebeispiel:

```c
SetCurrentDirectory("C:\Program Files (x86)\LGLN\gntrans_ni\bin64");
hdll = LoadLibrary("C:\Program Files (x86)\LGLN\gntrans_ni\bin64\gntrans_ni_64.dll");
```

2.5.3 Funktionsumfang

Um Aufrufe der GNTRANS_NI API in einer Hochsprache realisieren zu können, wird die Header-Datei "gntrans_dll.h" mitgeliefert.

Wie in Abschnitt 1.3.2 gesagt, ist GNTRANS_NI lediglich für die Transformation zwischen den CRS DE_DHDN_3GK<sn>_NI100 und ETRS89_UTM32 vorgesehen. In der Header-Datei ist vermerkt, dass ETRS89-Koordinaten darüber hinaus auch in kartesischer und ellipsoidischer Form verarbeitet werden können. Dementgegen ist die Ein- und Ausgabe kartesischer ETRS89-Koordinaten bei der GNTRANS_NI API jedoch nicht zugelassen.

In Tabelle 3 sind die Funktionen der GNTRANS_NI API zusammengestellt. Neben der aufgeführten Funktionsdeklaration sind alle Eingabeparameter erläutert (vgl. auch die Angaben in der Header-Datei). Zusätzliche Hinweise finden sich gegebenenfalls in den Bemerkungen wieder.

<table>
<thead>
<tr>
<th>Funktionsname</th>
<th>Kurzbeschreibung</th>
<th>Funktionsdeklaration</th>
<th>Eingabeparameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetDllVersion</td>
<td>Liefert die Versionsnummer der DLL</td>
<td><strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong> GetDllVersion(void);</td>
<td></td>
</tr>
<tr>
<td>GnTransGetErrorMsg</td>
<td>Gibt die Fehlermeldung zu einem numerischen GnTrans Fehlercode zurück.</td>
<td><strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong> GnTransGetErrorMsg(int retVal, char* retValString, int retValStringLength);</td>
<td></td>
</tr>
<tr>
<td>Funktionsname</td>
<td>Kurzbeschreibung</td>
<td>Funktionsdeklaration</td>
<td>Eingabeparameter</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>gntrans_get_version_</td>
<td>Liefert einen Versionsstring der DLL. Dient vor allem zur Identifizierung in Geo++ Programmen.</td>
<td>GNTRANS_DLL_API const char * CALLING_CONVENTION_GNTRANS_DLL gntrans_get_version_(void);</td>
<td></td>
</tr>
<tr>
<td>GnTransGetLGDgmDLLVersion</td>
<td>Gibt die Version der lgndgm.dll zurück, die von GNTRANS geladen wird.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GnTransGetLGDgmDLLVersion(void);</td>
<td></td>
</tr>
<tr>
<td>GnTransGetLGDgmVersion</td>
<td>Gibt die Version des LGN DGM zurück, das von GNTRANS geladen wird.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GnTransGetLGDgmVersion(void);</td>
<td></td>
</tr>
<tr>
<td>GnTransInit</td>
<td>Initialisiert ein Gntrans Handle und muss vor der Benutzung eines Gntrans Handles einmal aufgerufen werden.</td>
<td>GNTRANS_DLL_API GNTRANSHDL CALLING_CONVENTION_GNTRANS_DLL GnTransInit(int* ret);</td>
<td></td>
</tr>
<tr>
<td>GnTransInitZDTo3D</td>
<td>Initialisiert ein Gntrans Handle und muss vor der Benutzung eines Gntrans Handles einmal aufgerufen werden, anstatt. Diese Funktion arbeitet nur bei entsprechender Freischaltung der AED-SICAD/LGN Option.</td>
<td>GNTRANS_DLL_API GNTRANSHDL CALLING_CONVENTION_GNTRANS_DLL GnTransInitZDTo3D(int* ret);</td>
<td></td>
</tr>
<tr>
<td>GnTransDestroy</td>
<td>Der Speicher der internen Struktur eines Gntrans Handles kann mit dieser Funktion freigegeben werden.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GnTransDestroy(GNTRANSHDL pGNTRANS);</td>
<td></td>
</tr>
<tr>
<td>GetNPossibleStates</td>
<td>Funktion liefert Anzahl verfügbarer Bundesländer, die in gntrans.dll implementiert sind.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GetNPossibleStates(GNTRANSHDL pGNTRANS, int* CountStates);</td>
<td></td>
</tr>
<tr>
<td>GetPossibleStates</td>
<td>Funktion liefert Informationen zu den verfügbaren Bundesländern.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GetPossibleStates(GNTRANSHDL pGNTRANS, SStateInfo* States);</td>
<td></td>
</tr>
<tr>
<td>GetPossibleStatesEx</td>
<td>Liefert erweiterte Informationen zu den verfügbaren Bundesländern.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GetPossibleStatesEx(GNTRANSHDL pGNTRANS, SStateInfoEx* States);</td>
<td></td>
</tr>
<tr>
<td>GetPossibleStatesEx2</td>
<td>Liefert erweiterte Informationen zu den verfügbaren Bundesländern.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GetPossibleStatesEx2(GNTRANSHDL pGNTRANS, SStateInfoEx2* States);</td>
<td></td>
</tr>
<tr>
<td>GnTransGiveOverViewStates</td>
<td>Gibt auf dem Ausgabekanal stdout die verfügbaren Systeme aus.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GnTransGiveOverViewStates(GNTRANSHDL pGNTRANS);</td>
<td></td>
</tr>
<tr>
<td>GnTransFile</td>
<td>Dient zur Transformation von Dateien. Die Steuerung erfolgt über die Parameter analog zu den Optionen im Programm GNTRANS.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GnTransFile(GNTRANSHDL pGNTRANS, const char* land, const char* tran, int nletflag, int nflag, double nh, const char* datein, const char* dateiout);</td>
<td></td>
</tr>
<tr>
<td>GnTransFileEx</td>
<td>Dient zur Transformation von Dateien. Die Steuerung erfolgt über die Parameter analog zu den Optionen im Programm GNTRANS. Im Gegensatz zu GnTransFile() kann innerhalb dieser Funktion ein bestimbarer Meridianstreifen vorgegeben werden.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL GnTransFileEx(GNTRANSHDL pGNTRANS, const char* land, const char* tran, int nletflag, int nflag, double nh, const char* datein, const char* dateiout, int ht);</td>
<td></td>
</tr>
<tr>
<td>Funktionsname</td>
<td>Funktionsdeklaration</td>
<td>Eingabeparameter</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| GnTransStruct        |                       | int strip);                                                                     | **GnTransStruct**
<p>|                      |                       | 1) Eingabedatensatz und schreibt das Ergebnis in einen Ausgabedatensatz.          |                                                                                                                                                |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransStruct:</strong>                                                                                                                              |
|                      |                       |                                               | <strong>GNTRANSHDL pGNTRANS,</strong>                                                                                                                        |
|                      |                       |                                               | <em><em>const char</em> land,</em>*                                                                                                                             |
|                      |                       |                                               | <em><em>const char</em> tran,</em>*                                                                                                                            |
|                      |                       |                                               | <strong>int nletflag,</strong>                                                                                                                               |
|                      |                       |                                               | <strong>int nhflag,</strong>                                                                                                                                  |
|                      |                       |                                               | <strong>double nh,</strong>                                                                                                                                   |
|                      |                       |                                               | <em><em>const koord</em> koordin,</em>*                                                                                                                          |
|                      |                       |                                               | <em><em>koord</em> koordout);</em>*                                                                                                                             |
|                      |                       |                                               | <strong>GnTransStructEx</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransStructEx:</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANSHDL pGNTRANS,</strong>                                                                                                                        |
|                      |                       |                                               | <em><em>const char</em> land,</em>*                                                                                                                             |
|                      |                       |                                               | <em><em>const char</em> tran,</em>*                                                                                                                            |
|                      |                       |                                               | <strong>int nletflag,</strong>                                                                                                                               |
|                      |                       |                                               | <strong>int nhflag,</strong>                                                                                                                                  |
|                      |                       |                                               | <strong>double nh,</strong>                                                                                                                                   |
|                      |                       |                                               | <em><em>const koord</em> koordin,</em>*                                                                                                                          |
|                      |                       |                                               | <em><em>koord</em> koordout);</em>*                                                                                                                             |
|                      |                       |                                               | <strong>GnTransStructInit</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransStructInit:</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANSHDL pGNTRANS,</strong>                                                                                                                        |
|                      |                       |                                               | <em><em>const char</em> land,</em>*                                                                                                                             |
|                      |                       |                                               | <em><em>const char</em> tran,</em>*                                                                                                                            |
|                      |                       |                                               | <strong>int nletflag,</strong>                                                                                                                               |
|                      |                       |                                               | <strong>int nhflag,</strong>                                                                                                                                  |
|                      |                       |                                               | <strong>double nh,</strong>                                                                                                                                   |
|                      |                       |                                               | <em><em>const koord</em> koordin,</em>*                                                                                                                          |
|                      |                       |                                               | <em><em>koord</em> koordout);</em>*                                                                                                                             |
|                      |                       |                                               | <strong>GnTransStructEx2</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransStructEx2:</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANSHDL pGNTRANS,</strong>                                                                                                                        |
|                      |                       |                                               | <em><em>const koord</em> in,</em>*                                                                                                                              |
|                      |                       |                                               | <em><em>koord</em> out);</em>*                                                                                                                                  |
|                      |                       |                                               | <strong>Aus Performancegründen empfiehlt sich immer die Verwendung von</strong>                                                                             |
|                      |                       |                                               | <strong>GnTransStructEx2 in Verbindung mit GnTransInit (statt GnTransStruct oder GnTransStructEx).</strong>                                                  |
|                      |                       |                                               | <strong>GnTransStructxyz2llh</strong>                                                                                                                          |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransStructxyz2llh:</strong>                                                                                                                         |
|                      |                       |                                               | <em><em>const koord</em> in,</em>*                                                                                                                              |
|                      |                       |                                               | <em><em>koord</em> out,</em>*                                                                                                                                   |
|                      |                       |                                               | <em><em>const char</em> ell);</em>*                                                                                                                              |
|                      |                       |                                               | <strong>Ein Einsatz dieser Funktion kann sinnvoll sein, wenn dreidimensionale kartesische ETRS89-Koordinaten vorliegen.</strong>                                  |
|                      |                       |                                               | <strong>Da GNTRANS_NI die direkte Transformation solcher Koordinaten in das Landessystem nicht unterstützt, kann zuvor eine Koordinatenumformung in ellipsoidische ETRS89-Koordinaten durchgeführt werden.</strong> |
|                      |                       |                                               | <strong>Dabei ist dann zu beachten, dass bei einer anschließenden Datumstransformation nicht mehr die originäre Höheninformation, sondern die Höhe aus dem internen DGM für die Berechnungen verwendet wird.</strong> |
|                      |                       |                                               | <strong>Ferner ist zu bedenken, dass die Unterstützung der Transformation zwischen ellipsoidischen ETRS89- und DE_DHDN_3GK&lt;sn&gt;_NI100-Koordinaten nicht abschließend gewährleistet wird (s. Ausführungen unter GnTransStruct).</strong> |
|                      |                       |                                               | <strong>In dem Fall dann eine weitere Umformung der ellipsoidischen in abgebildete Koordinaten notwendig (s.</strong> |
|                      |                       |                                               | <strong>GnTransStructllh2xyz).</strong>                                                                                                                         |
|                      |                       |                                               | <strong>GnTransStructllh2xyz</strong>                                                                                                                          |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransStructllh2xyz:</strong>                                                                                                                         |
|                      |                       |                                               | <em><em>const koord</em> in,</em>*                                                                                                                              |
|                      |                       |                                               | <em><em>koord</em> out,</em>*                                                                                                                                   |
|                      |                       |                                               | <em><em>const char</em> ell);</em>*                                                                                                                              |
|                      |                       |                                               | <strong>Für die Verwendung dieser Funktion ist die Kenntnis über die ellipsoidische Höhe unabdingbar. Zu bedenken ist in diesem Zusammenhang, dass GNTRANS_NI bei der Ausgabe ellipsoidischer Koordinaten keine ellipsoidische Höhe ausgibt.</strong> |
|                      |                       |                                               | <strong>s. GnTransStructxyz2llh</strong>                                                                                                                         |
|                      |                       |                                               | <strong>GnTransInitSystem</strong>                                                                                                                             |
|                      |                       |                                               | <strong>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</strong>                                                                                         |
|                      |                       |                                               | <strong>GnTransInitSystem:</strong>                                                                                                                             |
|                      |                       |                                               | <em><em>const char</em> ell,</em>*                                                                                                                               |
|                      |                       |                                               | <em><em>const char</em> proj,</em>*                                                                                                                             |
|                      |                       |                                               | <strong>int pjc_strip,</strong>                                                                                                                                |
|                      |                       |                                               | <strong>int force_strip,</strong>                                                                                                                               |
|                      |                       |                                               | <strong>double lat_0,</strong>                                                                                                                                  |
|                      |                       |                                               | <strong>double lon_0,</strong>                                                                                                                                  |
|                      |                       |                                               | <strong>double x_0,</strong>                                                                                                                                    |</p>
<table>
<thead>
<tr>
<th>Funktionsname</th>
<th>Kurzbeschreibung</th>
<th>Funktionsdeklaration</th>
<th>Eingabeparameter</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umformungsfunktion</td>
<td>Umformungsfunktion gerufen werden. Danach können beliebig viele Umformungen mit dem eingestellten System durchgeführt werden.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</td>
<td>double y_0, double pjc_scl);</td>
<td></td>
</tr>
<tr>
<td>GnTransStructllh2RHhEx</td>
<td>Formt Koordinaten von geografisch/ellipsoidisch in Projektionssystem um. Vorher muss einmal GnTransInitSystem() aufgerufen werden, um Ellipsoid- und Projektionsparameter zu setzen.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</td>
<td>GnTransStructllh2RHhEx( const koord* koordin, koord* koordout);</td>
<td>siehe GnTransStructxyz2llh</td>
</tr>
<tr>
<td>GnTransStructRHh2llhEx</td>
<td>Formt Koordinaten vom Projektionssystem in geografisch/ellipsoidisch um. Vorher muss einmal GnTransInitSystem() aufgerufen werden, um Ellipsoid- und Projektionsparameter zu setzen.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</td>
<td>GnTransStructRHh2llhEx( const koord* koordin, koord* koordout);</td>
<td>siehe GnTransStructxyz2llh</td>
</tr>
<tr>
<td>GnTransStructxyz2llhEx</td>
<td>Formt Koordinaten von geozentrisch-kartesisch in geografisch/ellipsoidisch um. Vorher muss einmal GnTransInitSystem() aufgerufen werden, um Ellipsoidparameter zu setzen.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</td>
<td>GnTransStructxyz2llhEx( const koord* koordin, koord* koordout);</td>
<td>siehe GnTransStructxyz2llh</td>
</tr>
<tr>
<td>GetPatchVersion</td>
<td>Liefert die Version des Patches, die über den Patch Generator eingegeben wurde.</td>
<td>GNTRANS_DLL_API int CALLING_CONVENTION_GNTRANS_DLL</td>
<td>GetPatchVersion( GNTRANS_HDL pGNTRANS, const char* PatchName);</td>
<td></td>
</tr>
</tbody>
</table>
2.5.4 Fehlerwerte

In Tabelle 4 sind die Fehlerwerte (Returncodes) dokumentiert, die bei der Benutzung der Funktionen der GNTRANS API auftreten können.

<table>
<thead>
<tr>
<th>Fehlerwert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-99</td>
<td>Es ist ein unvorhergesehener Fehler aufgetreten</td>
</tr>
<tr>
<td>0</td>
<td>Die Transformation war erfolgreich</td>
</tr>
<tr>
<td>1</td>
<td>Gntrans Handle nicht initialisiert / Konnte EingabeDatei nicht öffnen / System nicht initialisiert</td>
</tr>
<tr>
<td>2</td>
<td>Konnte AusgabeDatei nicht öffnen</td>
</tr>
<tr>
<td>3</td>
<td>Fehler beim Lesen der EingabeDatei</td>
</tr>
<tr>
<td>4</td>
<td>Gntrans Handle ist nicht initialisiert</td>
</tr>
<tr>
<td>5</td>
<td>GnTransStructInit did not run successfully</td>
</tr>
<tr>
<td>6</td>
<td>Fehler in der Länderangabe</td>
</tr>
<tr>
<td>7</td>
<td>Fehler in der Transformationsangabe</td>
</tr>
<tr>
<td>9</td>
<td>Checksum Fehler in Patch Datei</td>
</tr>
<tr>
<td>10</td>
<td>Invalid SStatelnfo struct version</td>
</tr>
<tr>
<td>11</td>
<td>No states possible (Es stehen keine Bundesländer zur Verfügung)</td>
</tr>
<tr>
<td>20</td>
<td>ungültige Projektion in proj (Der Projektionsname konnte nicht gefunden werden.)</td>
</tr>
<tr>
<td>21</td>
<td>ungültiges Ellipsoid in ell (Der Ellipsoidname konnte nicht gefunden werden.)</td>
</tr>
<tr>
<td>22</td>
<td>System nicht mit GnTransInitSystem() initialisiert</td>
</tr>
<tr>
<td>98</td>
<td>Benutzung ist nicht erlaubt --&gt; außerhalb des lizensierten Wertebereiches (z.B. NISA)</td>
</tr>
<tr>
<td>99</td>
<td>Benutzung ist nicht erlaubt --&gt; DongleSchutz</td>
</tr>
<tr>
<td>101 – 199</td>
<td>Der Wertebereich der Eingangswerte ist fehlerhaft.</td>
</tr>
<tr>
<td>991</td>
<td>&quot;sorry, you are not allowed to use this program please check your dongle no GNTRANS license available&quot;</td>
</tr>
<tr>
<td>992</td>
<td>Es ist ein Fehler beim Lesen der Datei „autostate.bin“ aufgetreten.</td>
</tr>
<tr>
<td>993</td>
<td>Die Datei „autostate.bin“ existiert nicht.</td>
</tr>
<tr>
<td>1335</td>
<td>Das Bundesland existiert bereits.</td>
</tr>
</tbody>
</table>
2.5.5 Beispielprogramm

//Name: ExampleGNTRANS_NI-CPP.cpp
//Copyright: Landesamt für Geoinformation und Landentwicklung Niedersachsen
//Datum: 17.02.2011
//Description: Implementierungsbeispiel für die GNTRANS_NI API
//C++, Ansi-style

//Einbinden von Header-Dateien
#include <windows.h>
#include <iostream>
using namespace std;
#include <iomanip>

#define MAKE_NISA_GNTRANS

//Einbinden der GNTRANS_NI-Header-Datei
#include <gntrans_dll.h>

//Hauptprogramm
int main(int argc, char* argv[]) {
    //Definition der Funktionen der DLL
    typedef int (*GetDllVersion)();
    typedef int (*GnTransGetLGNDgmVersion)();
    typedef const char* (*gntrans_get_version_)();
    typedef GNTRANSHDL (*GnTransInit)(int*);
    typedef int (*GnTransDestroy)(GNTRANSHDL);
    typedef int (*GetNPossibleStates)(GNTRANSHDL, int*);
    typedef int (*GetPossibleStatesEx)(GNTRANSHDL, SStateInfoEx*);
    typedef int (*GnTransStructInit)(GNTRANSHDL, char*, char*, int, int, double, int, int);
    typedef int (*GnTransStructEx2)(GNTRANSHDL, koord*, koord*);
    typedef int (*GnTransFileEx)(GNTRANSHDL, char*, char*, int, int, double, char*, char*, int, int);

    //Deklaration von Funktionszeigern
    GetDllVersion pGetDllVersion;
    GnTransGetLGNDgmVersion pGnTransGetLGNDgmVersion;
    gntrans_get_version_ pgntrans_get_version_;
    GnTransInit pGnTransInit;
    GnTransDestroy pGnTransDestroy;
    GetNPossibleStates pGetNPossibleStates;
    GetPossibleStatesEx pGetPossibleStatesEx;
    GnTransStructInit pGnTransStructInit;
    GnTransStructEx2 pGnTransStructEx2;
    GnTransFileEx pGnTransFileEx;

    //Initialisierung des Rückgabewertes
    int ret = 0;

    //dynamische Einbindung der DLL
    HINSTANCE hdll; //Handle für DLL
    hdll = LoadLibrary("gntrans_ni.dll");
    if(hdll!=NULL) {
        //Funktionszeiger auf die Funktionen abrufen
        pGetDllVersion = (GetDllVersion)GetProcAddress(hdll, "GetDllVersion");
        pGnTransGetLGNDgmVersion = (GnTransGetLGNDgmVersion)GetProcAddress(hdll, "GnTransGetLGNDgmVersion");
        pgntrans_get_version_ = (gntrans_get_version_)GetProcAddress(hdll, "gntrans_get_version_");
        pGnTransInit = (GnTransInit)GetProcAddress(hdll, "GnTransInit");
        pGnTransDestroy = (GnTransDestroy)GetProcAddress(hdll, "GnTransDestroy");
        pGetNPossibleStates = (GetNPossibleStates)GetProcAddress(hdll, "GetNPossibleStates");
        pGetPossibleStatesEx = (GetPossibleStatesEx)GetProcAddress(hdll, "GetPossibleStatesEx");
    }
pGnTransStructInit = (GnTransStructInit)GetProcAddress(hdll, "GnTransStructInit");
pGnTransStructEx2 = (GnTransStructEx2)GetProcAddress(hdll, "GnTransStructEx2");
pGnTransFileEx = (GnTransFileEx)GetProcAddress(hdll, "GnTransFileEx");

/**
 * Ausgabe allgemeiner Informationen
 */

// Ausgabe der Version der gntrans.dll
if(pGetDllVersion) {
    cout << "Die Version der gntrans_ni.dll ist " << pGetDllVersion() << ".\n"
} else {
    cerr << "Die Funktion GetDllVersion steht nicht zur Verfuegung.\n"
}

// Ausgabe der Version der LGNDGM-DLL
if(pGnTransGetLGNDgmVersion) {
    cout << "Die Version der LGNDGM-DLL ist " << pGnTransGetLGNDgmVersion() << ".\n"
} else {
    cerr << "Die Funktion GnTransGetLGNDgmVersion " << "steht nicht zur Verfuegung.\n"
}

// Versionsstring der DLL
if(pgtrans_get_version_) {
    cout << "Versionsstring der gntrans_ni.dll: " << pgtrans_get_version_() << 
    } else {
    cerr << "Die Funktion gntrans_get_version_ steht nicht zur " << "Verfuegung.\n"
    }

// Initialisierung der DLL:
if(pGnTransInit) {
    GNTRANSHDL pGntrans = pGnTransInit(&ret);
    cerr << "Initialisierung der gntrans_ni.dll; Rueckgabewert: " << ret << 
    if(ret==0) {
        //Anzahl implementierter Transformationen
        int countStates;
        if(pGetNPossibleStates) {
            ret = pGetNPossibleStates(pGntrans, &countStates);
            if(ret==0) {
                cout << "\nAnzahl gegebener Transformationsmoeglichkeiten: " << countStates << 
                } // erweiterte Informationen
        SStateInfoEx *statesEx = (SStateInfoEx *)malloc(countStates*sizeof(SStateInfoEx));
        if(pGetPossibleStatesEx) {
            ret = pGetPossibleStatesEx(pGntrans, statesEx);
            if(ret==0) {
                cout << "\n*** Erweiterte Informationen zu den " << "Transformationen ***";
                for(int j=0; j<countStates; j++) {
            }
        }
    }
}
<< "Abbildung: 
<< statesEx[j].Proj << "\n" 
<< "Verdichtungsstufe: " << statesEx[j].Patch << "\n";
} 
else {
  cerr << "\nFehler bei der erweiterten Ausgabe " 
<< "von Informationen zu den verfuegbaren " 
<< "Transformationen; Rueckgabewert: " << ret << "\n";
} 
else {
  cerr << "\nDie Funktion GetPossibleStatesEx steht nicht " 
<< "zur Verfuegung." 
<< "\n";
} 
else {
  cerr << "\nFehler bei der Ermittlung der Anzahl verfuegbbarer " 
<< "Transformationen; Rueckgabewert: " << ret << "\n";
} 
else {
  cerr << "Die Funktion GetNPossibleStates steht nicht zur " 
<< "Verfuegung.\n";
}
/** 
 * Transformation mit GnTransStructEx2 
*/
//Füllen der Steuerungstrukturen und Variablen:
koord Xin = {{3554643.584, 5808517.070, -999999999.0},
{0.001, 0.001, 0.001},
{0.000, 0.000, 0.000}};
koord Xout = {{0.000, 0.000, 0.000},
{0.000, 0.000, 0.000},
{0.000, 0.000, 0.000}};
char land[] = "NISA7P_P53";
char tran[] = "LSET";
int nlflag = 2;
int nhflag = 0;
double nh = 0.;
int ht = 0;
int strip = 0;

//Initialisierung der Transformation mit GnTransStructEx2:
if(pGnTransStructInit&&pGnTransStructEx2) {
  cout << "\n*** Transformation mit GnTransStructEx2 ***\n";
  ret = pGnTransStructInit(pGntrans, land, tran, nlflag, nhflag, nh,
  ht, strip);
  if(ret!=0) {
    cerr << "Fehler bei der Initialisierung der Transformation für" 
<< " GnTransStructEx2; Rueckgabewert: " << ret << "\n";
  } else {
  for(int i = 0; i<5; i++) {
    //Durchführen der Transformation:
    ret = pGnTransStructEx2(pGntrans, &Xin, &Xout); 
    if(ret==0) {
      cerr << "\nTransformation mit GnTransStructEx2 war " 
      << "erfolgreich; Rueckgabewert: " << ret << ".\n";
      cout.precision(4);
      cout << "Die transformierten Koordinaten lauten (ENh):\n" << Xout.xyz[0] << " " << Xout.xyz[1] << " " << Xout.xyz[2] << "\n";
      Xin.xyz[0]+=0.1;
      Xin.xyz[1]+=0.1;
    } else { 
      cerr << "Fehler bei der Transformation mit " 
      << "GnTransStructEx2; Rueckgabewert: " << ret << "\n";
    } 
  } 
} else {
  cerr << "\nDie Funktion GnTransStructInit oder GnTransStructEx2 " 
  << "steht nicht zur Verfuegung.\n";
/**
 * Transformation mit GnTransFileEx
 */

// Füllen der Steuerungstrukturen und Variablen:
strcpy(tran,"LSET");
char dateiin[] = "test.gkh";
char dateiout[] = "test.utm";

// Transformation mit GnTransFileEx
if(pGnTransFileEx) {
    cout << "\n*** Transformation mit GnTransFileEx ***\n";
    ret = pGnTransFileEx(pGntrans, land, tran, nlflag, nhflag, nh,
                         dateiin, dateiout, ht, strip);
    if(ret==0) {
        cerr << "Transformation mit GnTransFileEx war erfolgreich; "
             "Rückgabewert: " << ret << "\n";
        cout << "Die Ergebnisse wurden in folgende Datei geschrieben: "
             << dateiout << ".\n";
    } else {
        cerr << "Fehler bei der Transformation mittels GnTransFileEx; "
             "Rückgabewert: " << ret << "\n";
    }
} else {
    cerr << "\nDie Funktion GnTransFileEx steht nicht zur "
         "Verfügung.\n";
}

// Freigabe der Systemressourcen
ret = pGnTransDestroy(pGntrans);
FreeLibrary(hdll);
cerr << "\nGNTRANS_NI wird normal beendet.\n";
return ret;
} else {
    cerr << "\nFehler bei der Initialisierung der DLL. "
         "Programmabbruch!\n"
    FreeLibrary(hdll);
    return 9998;
} else {
    cerr << "Die Funktion GnTransInit steht nicht zur Verfügung. "
         "Programmabbruch!\n"
    FreeLibrary(hdll);
    return 9999;
} else {
    cerr << "Die GNTRANS_NI-DLL steht nicht zur Verfügung.\n"
    return 10000;
}
3 Literatur

AdV: Dokumentation zur Modellierung der Geoinformationen des amtlichen Vermessungswesens (GeoInfoDok), Kapitel 7.1 – Koordinatenreferenzsysteme für AFIS-ALKIS-ATKIS, Version 6.0.1, Stand: 01.07.2009


Nutzungsbedingungen des Landes Niedersachsen, vertreten durch das Landesamt für Geoinformation und Landesvermessung Niedersachsen, Landesbetrieb Landesvermessung und Geobasisinformation, Podbielskistraße 331, 30659 Hannover für die Transformationssoftware GNTRANS_NI vom 01.08.2017

Niedersächsisches Gesetz über das amtliche Vermessungswesen (N VermG) vom 12. Dezember 2002
